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ABSTRACT 
Background: Use of instrumental variables is gaining popularity as a method of controlling for 
confounding by indication in observational studies of treatments  
Objectives: To illustrate how unmeasured instrument-level treatment substitution can distort 
effect size estimates using as an example an instrumental variable analysis of phototherapy for 
neonatal jaundice. 
Design: Retrospective cohort study 
Setting: Northern California Kaiser Permanente Hospitals  
Patients:  We studied 20,731 newborns ≥2000 g and ≥35 weeks gestation born 1995-2004 with 
a "qualifying" total serum bilirubin (TSB) level within 3 mg/dL of the 2004 AAP phototherapy 
threshold who did not have a positive Direct Antiglobulin Test.  
Measurements: The intervention was inpatient phototherapy within 8 hours of the qualifying 
TSB.  The outcome was a TSB level exceeding the AAP exchange transfusion threshold <48 
hours from the qualifying TSB. The instrumental variable was a measure of the frequency of 
phototherapy use at the newborn's birth hospital.  The unmeasured substituted treatment was 
supplementation with infant formula, assessed by chart review in sample from the same cohort. 
Results:  128 infants (0.62%) exceeded the exchange transfusion threshold. Logistic and 
propensity analyses yielded crude odds ratios of ~0.5 for phototherapy efficacy, decreasing to 
~0.2 with control for confounding by indication. Instrumental variable analyses suggested much 
greater phototherapy efficacy (e.g., odds ratios of 0.02-0.05).  However, chart reviews revealed 
greater use of infant formula (which also lowers bilirubin levels) in hospitals that used more 
phototherapy (r=0.56; P=0.02), an association not present at the individual level (r=0.13).  
Conclusions: Instrumental variable analyses may provide biased estimates of treatment 
efficacy if there are cointerventions or confounders associated with treatment at the level of the 
instrument, even when these associations may not exist in individuals. 
[Abstract 274 words (maximum=275)]
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BACKGROUND  
Although jaundice in newborns is common and generally benign, very high total serum 

bilirubin (TSB) levels can injure the newborn's central nervous system.(1, 2) For this reason, 
TSB levels in jaundiced newborns are followed and sometimes treated with either phototherapy 
or exchange transfusion if they are at risk of rising to or have already reached potentially 
dangerous levels.  The American Academy of Pediatrics (AAP) has published guidelines (3) that 
suggest TSB levels at which phototherapy and exchange transfusion are recommended for term 
and late preterm newborns.  However, there are no randomized trials that quantify the efficacy 
of these interventions at the TSB levels at which they are currently recommended.  Even a 
randomized trial of phototherapy, which is done much more commonly than exchange 
transfusion, would be difficult to do because relevant outcomes, such as a TSB level exceeding 
the AAP's threshold for exchange transfusion, are rare(4, 5) and because there are ethical 
obstacles to randomizing newborns not to receive a therapy recommended by the AAP. 
  
 We recently reported a historical cohort study that took advantage of practice variation in 
the use of phototherapy in the Northern California Kaiser Permanente Medical Care Program 
(NC-KPMCP).  We estimated the efficacy of phototherapy at preventing significant 
hyperbilirubinemia in infants with TSB levels within 3 mg/dL of the AAP’s phototherapy 
threshold.(6) We found that inpatient phototherapy was effective in newborns who did not have 
a positive direct antiglobulin test (DAT), with a multivariate odds ratio of 0.16 (95% CI 0.07, 
0.34).  However, we did not have data on breastfeeding or formula use for that study.  Because 
continuing exclusive breastfeeding is a risk factor for subsequent hyperbilirubinemia,(7) we 
reasoned that phototherapy was more indicated, and therefore might be more commonly used 
in infants continuing to breast feed exclusively.  Thus, we expected that the effect of not having 
breast-feeding data might be residual confounding by indication, which would cause the 
observed odds ratio to be falsely high.  
 
 Analyses using propensity scores(8, 9) and instrumental variables(10-12) are 
alternatives to standard multivariable models for estimating effects of treatments in 
observational studies.  Instrumental variables differ from the other techniques in that they may 
allow control for unmeasured confounding variables.(13-15) A good instrumental variable is one 
that is strongly associated with the treatment of interest (in this case, timely inpatient 
phototherapy), but not independently associated with the outcome (in this case, a TSB level 
exceeding the AAP's exchange transfusion threshold within 48 hours.) Because of considerable 
seemingly random variability in use of phototherapy at different NC-KPMCP facilities(16, 17), we 
hypothesized that the rate of phototherapy use at the infant’s birth hospital might be a good 
instrumental variable, and that use of this technique would provide estimates of treatment 
efficacy less attenuated by confounding by indication than traditional logistic regression or 
propensity score analyses. 
 
 However, our instrumental variable analysis produced what we believe are implausibly 
low odds ratios.  In this report, we compare results of our instrumental variable analyses with 
those obtained using logistic regression and propensity score analyses, and show how an 
association between formula supplementation and phototherapy use at the hospital level may 
have led to exaggerated estimates of phototherapy efficacy in the instrumental variable 
analyses. 
  
 
METHODS 
 Overall Design, Birth Cohort and Institutional Review Board Approval 
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We identified subjects and electronic data for this retrospective cohort study from the 
cohort of infants born alive in 12 NC-KPMCP hospitals from January 1, 1995 to December 31, 
2004, whose birth weight was ≥ 2000 grams, and whose gestational age was ≥ 35 weeks (N = 
281,898), as previously described.(6) This project was approved by the NC-KPMCP Institutional 
Review Board for the Protection of Human Subjects and by the University of California, San 
Francisco Committee on Human Research. 

Study Subjects 
We chose subjects who were reasonable candidates for phototherapy, based on the 

2004 AAP hyperbilirubinemia treatment guidelines.  These guidelines are summarized in 2 
figures, one for phototherapy and one for exchange transfusion. Each figure has TSB treatment 
threshold lines for infants in 3 risk groups, defined by gestational age (< 38 weeks or ≥ 38 
weeks) and the presence of hemolysis or other signs of significant illness. Because we 
previously found diminished efficacy of phototherapy in DAT-positive infants,(6) we excluded 
infants with a positive DAT. Therefore, our study population was divided into the AAP's low- and 
medium-risk groups based only on whether the gestational age was ≥ or <38 weeks.  For each 
infant we then compared all TSB levels to the treatment guidelines and included infants with a 
TSB level within 3 mg/dL of the AAP phototherapy threshold for their age and gestational age 
group. For each newborn, we considered the first such TSB the qualifying TSB.  We excluded 
infants if their TSB was already declining, if they did not have a subsequent documented decline 
in their TSB, or if a conjugated or direct bilirubin level at the time of the qualifying TSB was ≥ 2.0 
mg/dL. Figure 1 shows the qualifying TSB levels and AAP phototherapy thresholds by ages of 
the included subjects.   

Predictor variables 
Covariables:  We obtained maternal and infant demographic data, bilirubin levels, 

hospitalizations and procedures from NC-KPMCP databases.  Because of its strong association 
with both phototherapy use and the outcome, a key calculated predictor variable was the 
difference between the newborn’s qualifying TSB and the TSB level at which the AAP 
recommends phototherapy for infants of that age and risk group, which we coded with indicator 
variables in 1 mg/dL categories (e.g., -3.0 to -2.1 mg/dL, -2.0 to -1.1 mg/dL, etc.)  

 
Intervention: The intervention was receipt of hospital phototherapy within 8 hours of the 

qualifying TSB.  Because timing of hospital phototherapy was not available electronically, we 
assumed it began 1 hour after admission for readmissions with a procedure code for 
phototherapy. As previously described(6), we assumed all phototherapy during the birth 
hospitalization began within 8 hours of the qualifying TSB, our a priori point for dichotomizing 
timely phototherapy. For ease of exposition, hospital phototherapy within 8 hours as defined 
above may be referred to simply as "phototherapy" in this paper. We treated home phototherapy 
as a potential confounder, and considered it to have been given within 1 day of the qualifying 
TSB if a home phototherapy unit was delivered on the same day or the day after the qualifying 
TSB.  
 

Instrumental variables:  We used two similar instrumental variables.  Both were 
proportions of infants who had a qualifying TSB level 0 to 0.9 mg/dL above the AAP 
phototherapy threshold for their risk group who received hospital phototherapy within 8 hours of 
their qualifying TSB level.  For the first instrumental variable, we used the proportion for the 
infant's hospital of birth.  The second instrumental variable used the proportion for both hospital 
and year of birth.  Because the AAP guideline takes the newborn’s TSB, age and gestational 
age into account, these instruments should depend primarily on different propensities to use 
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phototherapy across hospitals and years, rather than on differences in the distribution of these 
potential confounding variables. 

Outcome variable 
Our outcome variable was a TSB level that reached the AAP exchange transfusion 

threshold within 48 hours of the qualifying TSB.(6)   For TSB levels that exceeded the exchange 
threshold > 48 hours after the qualifying TSB, we estimated the time that the exchange 
threshold was crossed by assuming a linear increase in TSB levels between the last TSB level 
below and the first TSB level above the threshold.  The TSB levels of the infants who developed 
the outcome, along with the AAP exchange thresholds for each gestational age group are 
shown in Figure 2.  

Statistical analysis 
We used SAS (SAS Corp, Cary, NC) to create datasets from NC-KPMCP databases, and Stata 
11 for all analyses (Stata Corp, College Station, TX).  We used four methods to estimate the 
effect of receiving phototherapy within 8 hours of the qualifying TSB on crossing the exchange 
threshold within 48 hours.  In each method, we adjusted for all of the same covariates included 
in our earlier analysis(6) including qualifying TSB level, sex, birth weight, gestational age in 
weeks, age in hours, and receipt of phototherapy at home.  We then compared this fully 
adjusted result with those obtained when we omitted all covariates except for birth facility.   

 
The first analysis used standard logistic regression, as in our earlier work.(6)  Standard 

model checks were performed, including the Hosmer-Lemeshow goodness of fit statistic, for 
nonlinearity (on the logit scale)  of the effect of birth weight (the sole continuous covariate), and 
whether omission of interactions impacted the OR for phototherapy.  The second analysis 
replaced adjustment variables with propensity scores, using logistic regression to control only 
for the quintile of the fully or minimally modeled propensity score.  Overlap of propensity scores 
for the treated and untreated infants was assessed graphically.  

 
Our third method used a bivariate probit regression model, now the standard 

instrumental variable approach for data where both the outcome and the exposure of interest 
are binary.  In brief, this approach assumes that the two observable binary variables (outcome 
and intervention) are manifestations of a corresponding pair of unobserved, correlated, bivariate 
normal latent variables, with the manifest variable taking on value 1 if the latent variable is 
positive, and 0 otherwise.  More formally, the bivariate probit model can be written as 

 

,   (1) 

 
where ETLi  and PTLi are, respectively, the latent values determining the probabilities of 
exceeding  the exchange threshold and receiving phototherapy for the ith infant; PTi is indicator 
for receipt of phototherapy, IVi is the value of the instrumental variable for the ith infant, zi is a 
vector of additional covariates,  and  are normally distributed error terms (with means 0, 
variances 1 and correlation ρ), and the  and  are parameters to be estimated from the 
data. If there is uncontrolled confounding in the multivariate analysis, the two error terms have a 
non-zero correlation.  This forms the basis of a formal likelihood ratio test on the adequacy of 
control for confounding in the multivariate logistic and propensity score models.  

 
It can be shown(18) that by accounting for the correlation between the two latent 

variables, the bivariate probit model removes the influence of unmeasured confounders and 
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enables estimation of causal effects – assuming that the instrument has no effect on the 
outcome except through its influence on the exposure.  This analysis was implemented using 
the biprobit command in Stata 11.   
 

For comparison, we also fit models using the ivprobit command in Stata 11.  That 
model assumes a latent variable for the outcome, exceeding the threshold, as in (1), but 
assumes that a linear regression model holds directly for PTi (as opposed to a linear regression 
for PTLi as in (1)).  The linear regression assumption for PTi is a dubious one since it is binary.   

 
In addition, we used the standard linear instrumental variables method (ivregress in 

Stata 11) appropriate for data where both the outcome and exposure are themselves correlated 
normal variables with means depending on exposure, covariates, and the instrument as in the 
bivariate probit analysis.  Again, accounting for the correlation between the exposure and the 
instrument is the means by which this analysis removes unmeasured confounding, provided the 
instrumental variable assumptions are met.  Because our outcome and exposure were binary, 
the normality assumptions implicit in this approach hold approximately at best. 

 
The instrumental variable analyses do not provide odds-ratios comparable to the 

summary effect measures provided by the standard logistic and propensity score analyses.  To 
address this difficulty, and to summarize the results of each analysis using common metrics, we 
calculated marginal estimates of the odds-ratio and absolute risk reduction for all four methods.  
To do this, the predicted probability of crossing the exchange transfusion threshold was 
calculated twice for each newborn from the model estimates: first, as if the newborn had 
received phototherapy within 8 hours, and second, as if he or she had not. Both sets of 
estimated probabilities were then averaged across all newborns whose qualifying TSB levels 
were greater than or equal to the AAP phototherapy threshold.  These calculations were 
implemented using the margins command, in Stata 11 (details in the appendix). The averages 
represent clinically relevant estimates of the expected failure rates if all qualifying infants were, 
and respectively were not, treated with phototherapy within 8 hours. Marginal odds-ratios and 
absolute risk reductions were then calculated from the two summary failure rates.  However, the 
marginal odds ratios based on the linear instrumental variable (ivregress command) results 
were negative and are not presented.  

 
Assuming confounding has been successfully controlled by the analysis, the marginal 

odds-ratios and absolute risk reductions are interpretable as average causal effects.  For the 
standard logistic and propensity score analyses, this assumption is, at best, plausible only for 
the fully adjusted analyses, but it may hold for both the minimally and fully adjusted instrumental 
variables analyses. 

 
Finally, bias-corrected bootstrap estimates and confidence intervals were calculated for the 
marginal odds-ratios and absolute risk reductions estimated by each of the minimally and fully 
adjusted analyses. In some cases these confidence intervals were asymmetric on the log odds 
scale because bootstrap confidence intervals circumvent the assumption of approximate 
normality of the distribution of the log odds ratio, unlike the confidence intervals typically 
produced by statistical software.  Effect size estimates using propensity scores and instrumental 
variables were recalculated in each of the 500 bootstrap samples. 

 
To investigate possible hospital-level confounding by formula use we used data from a 

previously reported nested case-control study of infants with TSB levels of 17 to 22.9 mg/dL, in 
which the cases were those that developed TSB levels ≥ 25 mg/dL.(7) One variable in that 
study, obtained by chart review, was whether infants were given any formula after their 
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qualifying TSB.  In that study, formula use was associated with a ~50% decrease in the risk of 
the outcome (reported previously as an odds ratio of 2.03 for continuing exclusive 
breastfeeding).(7) We correlated formula use with phototherapy use both at the individual level 
and at the hospital level using controls from this dataset.  We did not include cases because 
they would be expected to be unrepresentative (i.e., less likely to have received formula) and 
only made up 0.4% of the population at risk.  

 
RESULTS: 
 
 Demographic characteristics of the 4,584 infants who did and the 16,147 who did not 
receive hospital phototherapy within 8 hours of their qualifying TSB are compared in Table 1. 
Infants who received home phototherapy only (N=677) or hospital phototherapy more than 8 
hours after their qualifying TSB (N=1,538) are included in the group that did not receive timely 
inpatient phototherapy. Infants who received phototherapy within 8 hours were more likely to be 
< 38 weeks' gestation, which explains their lower qualifying TSB levels, since phototherapy is 
recommended at lower levels if the gestational age is < 38 weeks. However, as expected, their 
levels tended to be higher in relation to the phototherapy guideline. The qualifying TSB levels of 
the 20,731 infants eligible for the study are shown in Figure 1, along with the AAP phototherapy 
thresholds for the two different risk groups, defined by gestational age <38 weeks and ≥ 38 
weeks.  
 
 Use of phototherapy varied by hospital of birth (Table 2); the proportion receiving 
phototherapy within 8 hours of the qualifying TSB (our first instrumental variable) varied from 
11% to 42% when the TSB was from 0 to 0.9 mg/dL above the AAP phototherapy threshold.  
Similarly, phototherapy use for infants with TSB levels in that range varied by year of birth, from 
18.5% in 1995 to 37.2% in 2003, so that the hospital and year-specific rate (our second 
instrumental variable) varied from 3% to 62%.  Differences in phototherapy use within 8 hours 
by hospital of birth for infants with TSB levels 0 to 0.9 mg/dL above the AAP phototherapy 
threshold persisted after adjusting for infants' age, gestational age and other covariates, as 
shown in Table 2. 
  
 A total of 113 untreated infants (0.70%) and 15 treated infants (0.33%) developed the 
outcome, i.e. had TSB levels exceeding the AAP’s exchange level at < 48 hours.  These levels 
were generally only a few mg/dL above the exchange level and occurred between 60 and 120 
hours of age (Figure 2).   Although only 30% of the infants included in the study were born at 
less than 38 weeks’ gestation, this group made up 75% of those who developed the outcome.  
This occurred not because their TSB levels were higher, but because the AAP exchange 
transfusion threshold is lower for infants born at < 38 weeks (Figure 2). 
 
 Marginal odds ratios for logistic regression, propensity score, and the probit instrumental 
variable analyses are compared in Figure 3. When confounding variables were omitted from 
logistic and propensity analyses, odds ratios were about 0.5. With control for confounding by 
indication, the fully adjusted marginal odds ratio for the logistic analysis (0.18) is close to the 
0.16 we previously reported.  The propensity score analysis yielded similar results (OR= 0.5 
with hospital only in the propensity score, decreasing to 0.2 in the fully adjusted model.  This 
latter analysis revealed that there were only 10 outcomes in the bottom 2 propensity quintiles, of 
which only one was in a treated patient, making odds ratios in the lower quintiles unstable.  
 
  

Using a fully adjusted version of the bivariate probit model, (1), there was evidence for a 
remaining correlation between the error terms,  and  (p = 0.02), suggesting the presence of 
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unmeasured confounders in the logistic and propensity analysis and lending support for an 
instrumental variables analysis.  Point estimates of the odds ratios from the probit instrumental 
variable analyses based on hospital of birth were much lower than those from the logistic model 
and propensity score analysis, somewhat more resistant to omission of confounding variables, 
and less precisely estimated. Using an instrument based on both year and hospital of birth 
increased the odds ratios somewhat, but greatly increased the width of the confidence intervals, 
especially in the ivprobit model (Figure 3). 
 
 Estimates for risk differences showed the same pattern, with both probit and linear 
estimates for the risk difference greater than estimates from logistic regression or propensity 
score analysis, with much wider confidence intervals, especially for the ivprobit model (Figure 
4). The linear estimate was only minimally affected by omission of confounding variables.  
Results for the instrument based on both hospital and year of birth (not shown) were similar. 
 
 Our model adequacy checks revealed little cause for concern.  The Hosmer-Lemeshow 
goodness of fit statistic for the logistic model was not statistically significant (p=0.13), despite 
the large sample size.  The effect of birth weight showed some signs of nonlinearity, but 
representing the birth weight effect with a flexible spline function left the OR for phototherapy 
unchanged.  We tested a large number of two-way interactions, each at a nominal significance 
level of 0.1.  Two interactions gave p-values less than 0.05:  a mild interaction of age when the 
infant first came within 3 mg/dL of the AAP phototherapy threshold and phototherapy and an 
interaction of birth weight and gestational age.  Inclusion of the interaction between birth weight 
and gestational age made no difference to the odds ratio for phototherapy and the interaction 
with age at qualifying bilirubin arose because of an odds ratio slightly above 1 for a single age 
category with sparse data.  There was good overlap of the propensity scores in the treated and 
untreated infants.   
 

The fact that the odds ratio from the bivariate probit model was much lower than from 
the logistic and propensity models led us to investigate the possibility of confounding at the 
hospital level that did not exist at the individual level.  We found that while at the individual level 
phototherapy use was only weakly associated with formula use (r=0.13), at the hospital level, 
hospitals with higher rates of phototherapy use also had higher rates of formula use (Figure 5; 
r=0.56; P <0.001).  
 
DISCUSSION 
 

In this historical cohort study, all methods of analysis suggested that inpatient 
phototherapy was highly effective for treatment of neonatal jaundice. Traditional logistic 
regression analyses and analyses using propensity scores gave similar results, with odds ratios 
in the 0.15 to 0.2 range, whereas the odds ratios from the instrumental variable analyses based 
on the probit model were much lower (about 0.02 to 0.05).  Both the probit and linear models 
gave large risk differences; the probit results seem particularly implausible.    
 

In our previous report on the efficacy of phototherapy in this cohort,(6) we discussed two 
main limitations: 1) probable misclassification of exposure, due to limitations of electronic data 
for determining which infants were treated with phototherapy within 8 hours and  2) possible 
residual confounding by indication, as could occur if for example, infants at higher risk of 
subsequent hyperbilirubinemia due to continued exclusive breastfeeding were more likely to be 
treated with phototherapy.  Both types of errors would be expected to bias the odds ratio 
towards 1; the fact that the OR was 0.16 suggested neither was a significant problem.  We 
undertook the current analysis expecting that the instrumental variable approach would yield 
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somewhat lower odds ratios than previously reported because they should be less affected by 
uncontrolled confounding by indication.  
 

Our instrumental variable analyses illustrated some strengths and weaknesses of that 
approach.  The log odds ratios from the probit model were only slightly less affected by 
omission of known confounding variables than the traditional logistic regression or propensity 
score analyses, and confidence intervals were much wider.  Only with the linear model were the 
effect size estimates with and without inclusion of confounders almost equal.  However, when 
outcomes are rare (as in the present study) the relationship between risk differences obtained 
from additive models and odds ratios or risk ratios is highly unstable:(18) attempts to obtain 
marginal odds ratios from linear models as we originally planned gave nonsensical results.  
 

Perhaps the most interesting result is what we believe are implausibly low odds ratios for 
phototherapy in the probit analyses.  A falsely low OR for a treatment in an observational study 
(i.e., an OR suggesting the treatment is more effective than it really is) suggests that compared 
with those not treated, those receiving the treatment had lower levels of some risk factors or 
higher levels of some protective factors that were not in the model.  The main candidate in this 
case is a lower level of exclusive breast-feeding; i.e., greater use of infant formula among those 
treated with phototherapy. 
 

Our initial supposition was that because infants receiving formula would be at lower risk 
of subsequent hyperbilirubinemia, phototherapy would be less indicated for them, and hence 
they would be less likely to receive it.  However, another possibility is that when clinicians or 
parents are worried about hyperbilirubinemia, they might tend to treat with both phototherapy 
and formula supplementation.  Our data suggest that at the level of individual patients, this was 
not a strong association: clinicians that are concerned about jaundice might treat with 
phototherapy or formula, but treating with one did not make it much more likely that the infant 
would receive the other.  However, at the hospital level the association was stronger (Figure 5), 
suggesting that hospitals where there is more concern about bilirubin may be more likely to use 
both phototherapy and formula, even though they may not use both for the same newborn.  This 
would lead to a falsely low odds ratio for phototherapy in instrumental variable analyses, 
because the lower rate of the outcome among infants born in hospitals that use more 
phototherapy is due not just to their greater likelihood of receiving phototherapy, but also to their 
greater likelihood of receiving formula.  Because formula use is not included in the model, all of 
the bilirubin-lowering effect of differential formula use across hospitals is attributed to the 
difference in phototherapy use, thus creating an artificially optimistic estimate for the effect of 
phototherapy.  
 

This example provides a nice illustration of the meaning and limitations of an 
instrumental variable analysis.  Results of such analyses are probably best interpreted using if-
then statements.  In this example, the statement would be: “if all of the differences across 
hospitals in the risk of the outcome (adjusting for other known confounding factors) in newborns 
with TSB levels above the phototherapy threshold were due to differences in the use of 
phototherapy, then the average causal effect of phototherapy would be reflected in the odds 
ratios of 0.02 to 0.05.  When phrased this way, it is clear that although instrumental variables 
analyses are resistant to confounding, investigators and consumers of such analyses must be 
vigilant to the possibility that there may be associations of the instrument with the outcome in 
ways not mediated by the treatment.  In our case, this arose because of confounding at the level 
of the instrument. In particular, this example illustrates the need to be aware of the possibility of 
treatment substitution  e.g., in this case hospitals in which there was a greater level of concern 
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about neonatal jaundice may have been more likely to use formula or phototherapy, even 
though individual newborns who received one were not more likely to receive the other.  

 
 Several previous studies have reported results of instrumental variable analyses and 

propensity score or standard multivariable models for the same research question. (9, 19-26)  
Results of standard multivariable analyses and propensity analyses are almost always similar to 
one another, which is not surprising, since both rely on confounding variables having been 
measured.  Where instrumental variable analyses have differed from the other two techniques, 
the difference has been attributed to better(20) though still incomplete(24) control for 
unmeasured confounders. We did not find previous reports highlighting unrealistically optimistic 
estimates of effect from instrumental variable analyses attributed either to differential use of co-
interventions or choice of instrument, as we report here. 
 

We conclude that phototherapy was a highly effective treatment for neonatal jaundice in 
the term and near-term newborns in this study.  While instrumental variable analyses may 
produce estimates of treatment efficacy that are less affected by uncontrolled confounders, our 
results illustrate that different analytic techniques can provide different results and that 
investigators must be cautious about the possibility of confounding or cointerventions at the 
level of the instrument, even when these may not occur at the individual level. 
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Table 1: Characteristics of infants who did and did not receive inpatient phototherapy within 8 
hour of their qualifying TSB level 

  
Inpatient Phototherapy within 8 

hours     
  No  % or SD Yes % or SD Total  P  

Total N 
 

16,147    
 

4,584    
 

20,731    
Maternal age, years (mean +/- 
SD) 29.3  6.0  29.6  6.1  29.3  <0.001  

Male sex 9275 57.4% 2741 59.8% 
 

12,016   0.004  
Race, N (%)            <0.001  

White 6,472 40.1% 1,998 43.6% 8,470   
Asian 4,455 27.6% 1,166 25.4% 5,621   
Latino 3,611 22.4% 938 20.5% 4,549   
Other 708 4.4% 211 4.6% 919   
Black 616 3.8% 206 4.5% 822   

Unknown 285 1.8% 65 1.4% 350   
              

Gestational age, weeks              
Mean +/- SD 38.5  1.6  37.9  2.0     <0.001  
< 38  weeks  

4,240 26.3% 1,900 41.4% 14,591 
  

<0.001  
≥ 38 weeks 11,907 73.7% 2,684 58.6% 6,140   

Birth weight, grams (mean +/- 
SD) 3.354  0.53   3.22   0.66    

  
<0.001   

Qualifying TSB level, mg/dL  
15.05  3.44  13.45  3.73    

  
<0.001  

Age at qualifying TSB level, 
hours 67.9 40.9 49.2 0.3   

  
<0.001  

Maximum TSB 
17.9 2.6 16.4 2.7   

  
<0.001  

Difference between qualifying 
TSB and AAP phototherapy 
threshold (mg/dL) 

          
  

<0.001  
 -3 to -2.1 4,510 27.9% 933 20.4% 5,443   
 -2 to -1.1 4,127 25.6% 889 19.4% 5,016   
 -1 to -0.1 3,149 19.5% 863 18.8% 4,012   

 0 to 0.9 2,122 13.1% 754 16.4% 2,876   
 1.0 to 1.9 1,425 8.8% 633 13.8% 2,058   
 2.0 to 2.9 814 5.0% 512 11.2% 1,326   

Home phototherapy (ever) 
755 4.7% 107 2.3% 862 

  
<0.001  
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Table 2.  Variation in use of inpatient phototherapy within 8 hours by birth hospital for infants 0 to 0.9 mg/dL 
above the AAP phototherapy threshold  

Hospital Total 
N 

Qualifying 
TSB 0 to 0.9 
mg/dL above 

AAP 
guideline 

PT if TSB 0 
to 0.9 
mg/dL 

above AAP 
guideline 

Crude OR 
for PT 

Adjusted* OR 
for PT 

95% CI for 
Adjusted 

OR 
P 

    N % N %           
A 754 123 16% 22 18% 0.30 0.33 0.19 0.58 <0.001 
B 2,869 452 16% 118 26% 0.49 0.57 0.41 0.78 <0.001 
C 434 49 11% 14 29% 0.55 0.49 0.24 1.03 0.059 
D 1,106 98 9% 33 34% 0.70 0.58 0.35 0.97 0.040 
E 2,078 271 13% 56 21% 0.36 0.25 0.17 0.37 <0.001 
F 1,436 221 15% 59 27% 0.50 0.44 0.30 0.65 <0.001 
G 1,548 281 18% 38 14% 0.22 0.19 0.13 0.30 <0.001 
H 1,102 137 12% 43 31% 0.63 0.60 0.39 0.95 0.028 
J 2,313 342 15% 39 11% 0.18 0.18 0.12 0.27 <0.001 
K 1,967 264 13% 79 30% 0.59 0.59 0.41 0.84 0.004 
L 2,156 150 7% 48 32% 0.65 0.63 0.41 0.98 0.039 
M 2,968 488 16% 205 42% 1.00 (ref) 1.00 (ref) - - - 
                      
Total 20731 2876 14% 754 26%           
                      
*OR adjusted for year of birth, maternal age, race, sex, birth weight, gestational age, qualifying TSB (6 
categories), age at qualifying TSB (5 categories) 
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Figure 1: Qualifying total serum bilirubin (TSB) levels and American Academy of 
Pediatrics Phototherapy guidelines   
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Figure 2: TSB levels of infants who exceeded AAP exchange transfusion thresholds 
within 48 hours of their qualifying TSB. 
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Figure 3: Odds ratios and 95% confidence intervals for phototherapy controlling for 
hospital only or all known confounders (full model), by multivariate model. Biprobit 
and Ivprobit models use instrumental variables based on either phototherapy use by 
birth hospital (H) or by both birth hospital and year (HY). 
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Figure 4: Risk differences and 95% confidence intervals for phototherapy controlling 
for hospital only or all known confounders (full model).  Instrumental variables were 
based on hospital of birth only; see text. 
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Figure 5.  Association between receiving inpatient phototherapy and receiving 
formula after the qualifying total serum bilirubin level in the 12 study hospitals 
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APPENDIX (to MDM paper): Stata 11 code to obtain the marginal estimates of 
odds ratios and bootstrap confidence intervals shown in Figures 3 and 4. 

 
/*Appendix 
 
* This is the program used for point estimates and 95% CI shown in  
  Figures 3 and 4 of for MDM paper:  
 
 "Efficacy of Phototherapy for Newborns with Hyperbilirubinemia: 
  a Cautionary Example of an Instrumental Variable Analysis", by  
 by TB Newman, E Vittinghoff and CE McCulloch 
  
 Version of February 9, 2011  
  
The variables in this dataset are: 
   
id   * Study ID 
facil   Infant Facility of Birth 
race6   * Infant Race, 6 categories 
xf4_wi48h_of_ceph3 * Bilirubin over threshold within 48 hr. This is the outcome.  
   (Name refers to crossing Figure 4 of the AAP guideline)  
yob   * Year of Birth 
male   * Baby Sex: 0=F, 1=M 
age_pt_wi3_fi~5 * Age TSB 1st within 3 mg/dL of the PT threshold 
pt_home_wi_1day * Home phototherapy within 1 day of qualifying TSB 
ptt_difcat6  * Qualifying TSB - PT threshold in 6 categories 
pt_hosp_wi_8h  * Hospital PT within 8 h of qualifying TSB 
gest_wks_recoded * Gestational Age (wks) 
birth_wt_kg  * Birth Weight (kg, rounded)  
 
This appendix consists of a series of programs that run the analyses, followed by the 
bootstrap command at the end, which allows generation of bias-corrected estimates and 
95% CI. 
 
*/ 
  
**************Housekeeping plus read in the dataset 
set more off 
clear all 
set maxiter 25 
set mem 100m 
use mdm_appendix_dataset 
gen ptt_difcat6_plus3 = ptt_difcat6+3 
egen facil_yob = group(facil yob)    /*Generates an integer variable corresponding to 
 a unique combination of birth facility and year of birth; ranges from 1 to N = 

12 x 10*/ 
 
**************************** Standard logistic analysis ************************ 
 
capture program drop logistic_run 
program logistic_run, rclass 
 
* facility only 
 
logistic xf4_wi48h_of_ceph3 i.pt_hosp_wi_8h ib5.facil, iter(10) 
* marginal estimates  
margins pt_hosp_wi_8h if ptt_difcat6>=0, nose 
matrix b = r(b) 
scalar EY0 = b[1, 1] 
scalar EY1 = b[1, 2] 
return scalar EY1u = EY1 
return scalar EY0u = EY0 
return scalar ORu = EY1/(1-EY1)*(1-EY0)/EY0 
return scalar RDu = EY1-EY0 
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* fully adjusted  
logistic xf4_wi48h_of_ceph3 i.pt_hosp_wi_8h ib3.ptt_difcat6_plus3 

ib40.gest_wks_recoded /// 
 ib2.age_pt_wi3_first_cat pt_home_wi_1day male birth_wt_kg ib5.facil 
* marginal estimates  
margins pt_hosp_wi_8h if ptt_difcat6>=0, nose 
matrix b = r(b) 
scalar EY0 = b[1, 1] 
scalar EY1 = b[1, 2] 
return scalar EY1adj = EY1 
return scalar EY0adj = EY0 
return scalar ORadj = EY1/(1-EY1)*(1-EY0)/EY0 
return scalar RDadj = EY1-EY0 
 
end 
 
 
**************************** PROPENSITY SCORE ANALYSIS ***************** 
 
capture program drop pscore_run 
program pscore_run, rclass 
 
* facility only 
 
logistic pt_hosp_wi_8h ib5.facil   
predict propscore 
xtile psq = propscore, nq(5) 
logistic xf4_wi48h_of_ceph3 i.pt_hosp_wi_8h i.psq 
* marginal estimates  
margins pt_hosp_wi_8h if ptt_difcat6>=0, nose 
matrix b = r(b) 
scalar EY0 = b[1, 1] 
scalar EY1 = b[1, 2] 
return scalar EY1u = EY1 
return scalar EY0u = EY0 
return scalar ORu = EY1/(1-EY1)*(1-EY0)/EY0 
return scalar RDu = EY1-EY0 
 
* fully adjusted propensity score, including race and year of birth 
logistic pt_hosp_wi_8h ib3.ptt_difcat6_plus3 ib40.gest_wks_recoded /// 
 ib2.age_pt_wi3_first_cat male birth_wt_kg ib5.facil ib5.race6 i.yob 
predict propscore2 
xtile psq2 = propscore2, nq(5) 
logistic xf4_wi48h_of_ceph3 i.pt_hosp_wi_8h i.psq2 
* marginal estimates  
margins pt_hosp_wi_8h if ptt_difcat6>=0, nose 
matrix b = r(b) 
scalar EY0 = b[1, 1] 
scalar EY1 = b[1, 2] 
return scalar EY1adj = EY1 
return scalar EY0adj = EY0 
return scalar ORadj = EY1/(1-EY1)*(1-EY0)/EY0 
return scalar RDadj = EY1-EY0 
end 
 
********************* IV analysis using biprobit model, hospital only as IV  
 
capture program drop biprobit_run 
program biprobit_run, rclass  
 
* using instrument stratified only by hospital 
capture drop fh_pt_hosp_wi_8h 
capture drop fh_pt_h_wi_8h_dif0 
capture drop fh_pt_hosp_wi_8h_if_pttdiff_0 
 
egen fh_pt_hosp_wi_8h   = mean(pt_hosp_wi_8h), by(facil) 
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egen fh_pt_h_wi_8h_dif0 = mean(pt_hosp_wi_8h) if ptt_difcat6==0, by(facil)   
egen fh_pt_hosp_wi_8h_if_pttdiff_0 = mean(fh_pt_h_wi_8h_dif0), by(facil) 
  
* omitting control variables 
biprobit (xf4_wi48h_of_ceph3 i.pt_hosp_wi_8h) /// 
 (pt_hosp_wi_8h = fh_pt_hosp_wi_8h_if_pttdiff_0), difficult 
* marginal effects  
margins if ptt_difcat6>=0, at(pt_hosp_wi_8h = (0 1)) predict(pmarg1) nose 
matrix b = r(b) 
scalar EY0 = b[1, 1] 
scalar EY1 = b[1, 2] 
return scalar EY1u = EY1 
return scalar EY0u = EY0 
return scalar ORu = EY1/(1-EY1)*(1-EY0)/EY0 
return scalar RDu = EY1-EY0 
 
* fully adjusted 
biprobit (xf4_wi48h_of_ceph3 i.pt_hosp_wi_8h ib3.ptt_difcat6_plus3 

ib40.gest_wks_recoded /// 
 ib2.age_pt_wi3_first_cat pt_home_wi_1day male birth_wt_kg) /// 
 (pt_hosp_wi_8h = fh_pt_hosp_wi_8h_if_pttdiff_0 ib3.ptt_difcat6_plus3 

ib40.gest_wks_recoded /// 
 ib2.age_pt_wi3_first_cat pt_home_wi_1day male birth_wt_kg), difficult 
* marginal effects  
margins if ptt_difcat6>=0, at(pt_hosp_wi_8h = (0 1)) predict(pmarg1) nose 
matrix b = r(b) 
scalar EY0 = b[1, 1] 
scalar EY1 = b[1, 2] 
return scalar EY1adj = EY1 
return scalar EY0adj = EY0 
return scalar ORadj = EY1/(1-EY1)*(1-EY0)/EY0 
return scalar RDadj = EY1-EY0 
end 
 
********************* IV analysis using biprobit model, hospital-year as IV 

******************* 
 
capture program drop biprobit2_run 
program biprobit2_run, rclass  
 
* using instrument stratified by hospital and year 
capture drop fhy_pt_hosp_wi_8h 
capture drop fhy_pt_h_wi_8h_dif0 
capture drop fhy_pt_hosp_wi_8h_if_pttdiff_0 
egen fhy_pt_hosp_wi_8h   = mean(pt_hosp_wi_8h), by(facil_yob) 
egen fhy_pt_h_wi_8h_dif0 = mean(pt_hosp_wi_8h) if ptt_difcat6==0, by(facil_yob)   
egen fhy_pt_hosp_wi_8h_if_pttdiff_0 = mean(fhy_pt_h_wi_8h_dif0), by(facil_yob) 
 
* omitting control variables 
biprobit (xf4_wi48h_of_ceph3 i.pt_hosp_wi_8h) /// 
 (pt_hosp_wi_8h = fhy_pt_hosp_wi_8h_if_pttdiff_0), difficult 
* marginal effects  
margins if ptt_difcat6>=0, at(pt_hosp_wi_8h = (0 1)) predict(pmarg1) nose 
matrix b = r(b) 
scalar EY0 = b[1, 1] 
scalar EY1 = b[1, 2] 
return scalar EY1u = EY1 
return scalar EY0u = EY0 
return scalar ORu = EY1/(1-EY1)*(1-EY0)/EY0 
return scalar RDu = EY1-EY0 
 
* fully adjusted 
biprobit (xf4_wi48h_of_ceph3 i.pt_hosp_wi_8h ib3.ptt_difcat6_plus3 

ib40.gest_wks_recoded /// 
 ib2.age_pt_wi3_first_cat pt_home_wi_1day male birth_wt_kg) /// 
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 (pt_hosp_wi_8h = fhy_pt_hosp_wi_8h_if_pttdiff_0 ib3.ptt_difcat6_plus3 
ib40.gest_wks_recoded /// 

 ib2.age_pt_wi3_first_cat pt_home_wi_1day male birth_wt_kg), difficult 
* marginal effects  
margins if ptt_difcat6>=0, at(pt_hosp_wi_8h = (0 1)) predict(pmarg1) nose 
matrix b = r(b) 
scalar EY0 = b[1, 1] 
scalar EY1 = b[1, 2] 
return scalar EY1adj = EY1 
return scalar EY0adj = EY0 
return scalar ORadj = EY1/(1-EY1)*(1-EY0)/EY0 
return scalar RDadj = EY1-EY0 
end 
 
********************* IV analysis using ivprobit model, hospital only as IV 

******************* 
 
capture program drop ivprobit_run 
program ivprobit_run, rclass  
 
* using instrument stratified only by hospital 
capture drop fh_pt_hosp_wi_8h 
capture drop fh_pt_h_wi_8h_dif0 
capture drop fh_pt_hosp_wi_8h_if_pttdiff_0 
 
egen fh_pt_hosp_wi_8h   = mean(pt_hosp_wi_8h), by(facil) 
egen fh_pt_h_wi_8h_dif0 = mean(pt_hosp_wi_8h) if ptt_difcat6==0, by(facil)   
egen fh_pt_hosp_wi_8h_if_pttdiff_0 = mean(fh_pt_h_wi_8h_dif0), by(facil) 
  
* omitting control variables 
ivprobit xf4_wi48h_of_ceph3  /// 
 (pt_hosp_wi_8h = fh_pt_hosp_wi_8h_if_pttdiff_0), difficult 
* marginal effects  
margins if ptt_difcat6>=0, at(pt_hosp_wi_8h = (0 1)) predict(pr) nose 
matrix b = r(b) 
scalar EY0 = b[1, 1] 
scalar EY1 = b[1, 2] 
return scalar EY1u = EY1 
return scalar EY0u = EY0 
return scalar ORu = EY1/(1-EY1)*(1-EY0)/EY0 
return scalar RDu = EY1-EY0 
 
* fully adjusted 
ivprobit xf4_wi48h_of_ceph3 ib3.ptt_difcat6_plus3 ib40.gest_wks_recoded /// 
 ib2.age_pt_wi3_first_cat pt_home_wi_1day male birth_wt_kg /// 
 (pt_hosp_wi_8h = fh_pt_hosp_wi_8h_if_pttdiff_0), difficult 
* marginal effects  
margins if ptt_difcat6>=0, at(pt_hosp_wi_8h = (0 1)) predict(pr) nose 
matrix b = r(b) 
scalar EY0 = b[1, 1] 
scalar EY1 = b[1, 2] 
return scalar EY1adj = EY1 
return scalar EY0adj = EY0 
return scalar ORadj = EY1/(1-EY1)*(1-EY0)/EY0 
return scalar RDadj = EY1-EY0 
end 
 
 
********************* IV analysis using ivprobit model, hospital-year as IV  
 
capture program drop ivprobit2_run 
program ivprobit2_run, rclass  
 
* using instrument stratified only by hospital 
capture drop fhy_pt_hosp_wi_8h 
capture drop fhy_pt_h_wi_8h_dif0 
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capture drop fhy_pt_hosp_wi_8h_if_pttdiff_0 
 
egen fhy_pt_hosp_wi_8h   = mean(pt_hosp_wi_8h), by(facil_yob) 
egen fhy_pt_h_wi_8h_dif0 = mean(pt_hosp_wi_8h) if ptt_difcat6==0, by(facil_yob)   
egen fhy_pt_hosp_wi_8h_if_pttdiff_0 = mean(fhy_pt_h_wi_8h_dif0), by(facil_yob) 
 
* omitting control variables 
ivprobit xf4_wi48h_of_ceph3  /// 
 (pt_hosp_wi_8h = fhy_pt_hosp_wi_8h_if_pttdiff_0), difficult 
* marginal effects  
margins if ptt_difcat6>=0, at(pt_hosp_wi_8h = (0 1)) predict(pr) nose 
matrix b = r(b) 
scalar EY0 = b[1, 1] 
scalar EY1 = b[1, 2] 
return scalar EY1u = EY1 
return scalar EY0u = EY0 
return scalar ORu = EY1/(1-EY1)*(1-EY0)/EY0 
return scalar RDu = EY1-EY0 
 
* fully adjusted 
ivprobit xf4_wi48h_of_ceph3 ib3.ptt_difcat6_plus3 ib40.gest_wks_recoded /// 
 ib2.age_pt_wi3_first_cat pt_home_wi_1day male birth_wt_kg /// 
 (pt_hosp_wi_8h = fhy_pt_hosp_wi_8h_if_pttdiff_0), difficult 
* marginal effects  
margins if ptt_difcat6>=0, at(pt_hosp_wi_8h = (0 1)) predict(pr) nose 
matrix b = r(b) 
scalar EY0 = b[1, 1] 
scalar EY1 = b[1, 2] 
return scalar EY1adj = EY1 
return scalar EY0adj = EY0 
return scalar ORadj = EY1/(1-EY1)*(1-EY0)/EY0 
return scalar RDadj = EY1-EY0 
end 
 
*ivprobit2_run 
*return list 
 
********************* IV analysis using ivregress, hospital only as IV  
 
capture program drop ivregress_run 
program ivregress_run, rclass  
 
capture drop fh_pt_hosp_wi_8h 
capture drop fh_pt_h_wi_8h_dif0 
capture drop fh_pt_hosp_wi_8h_if_pttdiff_0 
 
egen fh_pt_hosp_wi_8h   = mean(pt_hosp_wi_8h), by(facil) 
egen fh_pt_h_wi_8h_dif0 = mean(pt_hosp_wi_8h) if ptt_difcat6==0, by(facil)   
egen fh_pt_hosp_wi_8h_if_pttdiff_0 = mean(fh_pt_h_wi_8h_dif0), by(facil) 
  
 
* omitting control variables 
ivregress liml xf4_wi48h_of_ceph3 (pt_hosp_wi_8h = fh_pt_hosp_wi_8h_if_pttdiff_0) 
margins if ptt_difcat6>=0, at(pt_hosp_wi_8h = (0 1)) nose 
matrix b = r(b) 
scalar EY0 = b[1, 1] 
scalar EY1 = b[1, 2] 
return scalar EY1u = EY1 
return scalar EY0u = EY0 
return scalar ORu = EY1/(1-EY1)*(1-EY0)/EY0 
return scalar RDu = EY1-EY0 
 
* fully adjusted 
ivregress liml xf4_wi48h_of_ceph3 i.ptt_difcat6_plus3 i.gest_wks_recoded /// 
 i.age_pt_wi3_first_cat pt_home_wi_1day male birth_wt_kg /// 
 (pt_hosp_wi_8h = fh_pt_hosp_wi_8h_if_pttdiff_0) 
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margins if ptt_difcat6>=0, at(pt_hosp_wi_8h = (0 1))  nose 
matrix b = r(b) 
scalar EY0 = b[1, 1] 
scalar EY1 = b[1, 2] 
return scalar EY1adj = EY1 
return scalar EY0adj = EY0 
return scalar ORadj = EY1/(1-EY1)*(1-EY0)/EY0 
return scalar RDadj = EY1-EY0 
 
end 
*ivregress_run 
*return list 
 
*************************** bootstrap the programs ************************** 
/*We used 500 reps except for 2000 for biprobit2.  For biprobit and ivprobit the 
 2 refers to instruments that include both hospital and year of birth.*/ 
 
local reps = 500 
 
set seed 9896 
bootstrap "logistic_run" /// 
 r(ORu) r(ORadj) r(EY0u) r(EY0adj) r(EY1u) r(EY1adj) r(RDu) r(RDadj) /// 
 , reps(`reps') dots  
 
set seed 9896  
bootstrap "pscore_run" /// 
 r(ORu) r(ORadj) r(EY0u) r(EY0adj) r(EY1u) r(EY1adj) r(RDu) r(RDadj) /// 
  , reps(`reps') dots  
 
set seed 9896 
bootstrap "ivregress_run" /// 
 r(ORu) r(ORadj) r(EY0u) r(EY0adj) r(EY1u) r(EY1adj) r(RDu) r(RDadj) /// 
 , reps(`reps') dots  
 
set seed 9896 
bootstrap "ivprobit_run" /// 
 r(ORu) r(ORadj) r(EY0u) r(EY0adj) r(EY1u) r(EY1adj) r(RDu) r(RDadj) /// 
 , reps(`reps') dots  
 
set seed 9896  
bootstrap "ivprobit2_run" /// 
 r(ORu) r(ORadj) r(EY0u) r(EY0adj) r(EY1u) r(EY1adj) r(RDu) r(RDadj) /// 
 , reps(`reps') dots  
 
set seed 9896 
bootstrap "biprobit_run" /// 
 r(ORu) r(ORadj) r(EY0u) r(EY0adj) r(EY1u) r(EY1adj) r(RDu) r(RDadj) /// 
 , reps(`reps') dots  
  
set seed 9896 
bootstrap "biprobit2_run" /// 
 r(ORu) r(ORadj) r(EY0u) r(EY0adj) r(EY1u) r(EY1adj) r(RDu) r(RDadj) /// 
 , reps(2000) dots  


